NASA TN D-4484
a.l

NASA TECHNICAL NOTE

¥
—r |
w ——
3 _g
= =T
= D=:
H—;g
= o
= 3
- E==<
m=x
% —_— P
< \lEa
= —1
= =§

LOAN COPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AFB, N M7

APPROXIMATE RELATIONS FOR
LAMINAR HEAT-TRANSFER AND
SHEAR-STRESS FUNCTIONS IN

EQUILIBRIUM DISSOCIATED AIR

by Ernest V. Zoby

Langley Research Center : S
Langley Station, Hampton, Va. ,.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. <« APRIL 1968



ERRATA

NASA Technical Note D-4484
APPROXIMATE RELATIONS FOR LAMINAR HEAT-TRANSFER AND
SHEAR-STRESS FUNCTIONS IN EQUILIBRIUM DISSOCIATED AIR

By Ernest V. Zoby &3
/7&’2&0@()

April 1968 b pltd

Page 7: Under the statement "The ranges of boundary conditions for equations (13)
and (14) were," the third equation should be 0.00603 = ¢w = 0.313 instead
of 0.00603 = &, =0.1.

Page 8, second line: Delete the phrase "without reference to the stagnation point."

Pages 11 and 12: In equations (B1) and (B4) of appendix B, the enthalpy difference
should be (He - hw) instead of (Haw - hW).

Since there were no exact solutions available for wall enthalpies near the adiabatic-wall
value for the blunt axisymmetric cases, the use of equations (16) and (B4) should be
restricted to {yw = 0.5 when te is not close to 1.

Issued 10-24-68 NASA-Langley, 1968



e

TECH LIBRARY KAFB, NM

VA0 WA

0131157

APPROXIMATE RELATIONS FOR LAMINAR HEAT-TRANSFER AND
SHEAR-STRESS FUNCTIONS IN EQUILIBRIUM DISSOCIATED AIR
By Ernest V. Zoby

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFST! price $3.00



!s R

APPROXIMATE RELATIONS FOR LAMINAR HEAT-TRANSFER AND
SHEAR-STRESS FUNCTIONS IN EQUILIBRIUM DISSOCIATED AIR

By Ernest V. Zoby
Langley Research Center

SUMMARY

Simple, approximate equations have been developed for computing the normal
derivatives of enthalpy and velocity evaluated at the surface of a flat plate or cone and
of a blunt axisymmetric body. These approximate equations were developed by corre-
lating exact similar solutions to the laminar boundary-layer equations for equilibrium
dissociated air. The results of these approximate equations represent the exact solu-
tions within +10 percent.

INTRODUCTION

Local laminar heat-transfer and shear-stress values are functions of the normal
derivatives of the enthalpy (temperature) and velocity profiles, respectively, evaluated
at the body surface. These normal derivatives are functions of the boundary conditions
and the boundary-layer chemistry, and their computation can be very involved.

For a perfect gas these normal derivatives have been computed by several tech-
niques, and the results of these computations have been presented for wide ranges of
boundary conditions and fluid-property variations in publications such as references 1
to 9. Exact and approximate analyses have been presented in references 10, 11, and 12
for reacting boundary layers. However, solutions for the normal derivatives by these
methods are time consuming, and extensive parametric studies such as have been made
for the perfect gas are not available. Also, some of the approximations are tedious to
evaluate and usually result in a loss of accuracy or are not generally applicable to a
wide range of flow conditions or both. Because of the existing problems involved with
the computation of the derivatives (and thereby the heat-transfer or shear-stress values),
simple, accurate methods are desirable. This paper presents approximate methods
which have been obtained by correlating similar solutions of the boundary-layer equa-
tions for equilibrium dissociated air. The results of these equations represent the
exact solutions within +10 percent. The development of the methods is given in appen-
dix A. In appendix B these methods are related to expressions for computing the heat
transfer and shear stress on flat plates, cones, and blunt axisymmetric bodies.
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SYMBOLS

skin-friction coefficient

similar stream function

total enthalpy

static enthalpy

joule s>

4
reference enthalpy (1.97 X 10 oram

Eckert's reference enthalpy

constant used in equation (12) to compute ¢,

exponent used in equation (12) to compute E\';v, s

Prandtl number
shape parameter in equations (3) and (4)
pressure

heating rate

effective nose radius
radius of body of revolution
static-enthalpy ratio, —-
He

velocity component along x-axis

boundary-layer coordinates in physical system

pressure-gradient parameter

total-enthalpy ratio, H
He



M viscosity

£n similarity coordinates

p density

T shear stress

Subscripts:

aw adiabatic wall

E evaluated at reference enthalpy hg and local pressure
e local conditions external to boundary layer
s stagnation condition

w wall conditions

Superscripts:

* evaluated at reference enthalpy h*

! first derivative with respect to 7
" second derivative with respect to 7
ANALYSIS AND DISCUSSION

Theory

The governing boundary-layer equations which constitute a system of nonlinear,
partial differential equations can be reduced to ordinary differential equations by a
transformation of the coordinate system and the assumption of local similarity. (Even
if similarity is not assumed, the system of equations is related to a transformed coor-
dinate system.) Because of this approach for solving the boundary-layer equations, the
convective heating rate and the aerodynamic shear stress at the wall are given by
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With the aid of the Howarth and Mangler transformations

and
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w = i35,

where 7 is the transformed y coordinate.
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equations (1) and (2) can be written for a flat plate (n = 0) as
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The heat-transfer and shear-stress values on cones can be computed by using the
Mangler transformation with equations (5) and (6), respectively.

In this investigation, the thermodynamic and transport properties of equilibrium
dissociated air are assumed to be known, and the problem is to evaluate the normal
derivatives in equations (5) to (8). The exact method (ref. 10) of determining these
derivatives is a solution of the equations for the compressible laminar boundary layer
on a high-speed digital computer. This approach is the only good method presently
available for the computation of f;", on a blunt axisymmetric body. However, since the
complete solution of the boundary-layer equations is not always desirable and can be
time consuming, approximate methods (refs. 11 and 12) which are acceptable for engi-
neering applications have been developed.

Approximate Methods

For flat plates, the normal velocity derivative is approximated in references 11

and 13 as 0.5
¥, x\U-
£ = 0.4'7<'O U > (11)

Py My

where Eckert's reference-enthalpy method is used to evaluate the reference conditions.
Equation (11) is used with equation (6) to compute the shear-stress or skin-friction coef-
ficient c¢g; the skin-friction coefficient is then related to the heat-transfer rate through
a modified form of Reynolds analogy. Therefore, this procedure does not require a
direct approximation for the normal enthalpy derivative to compute heat-transfer rates.
In reference 11, this approach for computing the heat-transfer and shear-stress values
is shown to compare very well with the exact solutions.

For blunt axisymmetric bodies, equations of the form

: Pete\™
S s = K<—-—pwuw> (1 - &) (12)
for approximating the normal enthalpy derivative at the stagnation point are given in ref-
erences 11 and 14. The results from these references were obtained by correlating
exact solutions of the stagnation-point boundary-layer equations and can be used with
equation (7) to compute the stagnation-point heat-transfer rate. For calculations away
from the stagnation point, equation (61) in reference 11 and equation (28) in reference 12

gnw/(l B gw)

gnws/(1 - gws)
with an equation similar to equation (23) in reference 11 to compute qw/qw . Although
equation (61) in reference 11 is more general than that given in reference 12, it is difficult

in ref. 12| that can be used

: . v e
are approximations for CW /CW s shown as
J



to evaluate and represents exact similar solutions within only 15 percent. The relation
given in reference 12 is based on high wall cooling conditions and constant Prandtl num-
ber and explicitly-neglects dissipation effects. In addition, neither relation allows for
the direct evaluation of {"'V and, thereby, of qW. No accurate, practical methods are
known for the approximation of f{;, and, thereby, of 7 on a blunt axisymmetric body.

From the preceding discussion, the desirability for simple, accurate methods for
evaluating the normal derivatives of enthalpy and velocity in a reacting boundary layer
is evident. These methods have been obtained by correlating the exact similar solutions
given in reference 11 for equilibrium dissociated air with a unit Lewis number. In ref-
erence 11, a nonunit Lewis number for equilibrium dissociated air is shown to have a
negligible effect on the shear stress and heat transfer. The relations developed (as
given in appendix A) for the present methods are as follows:

For a flat plate or cone

) p* 0.475
fy = 0.47 (13)
Py vy
and
* x\0.475
¢ =0.47(LL 1-(1—N )(1-t)1-: (14)
w Py gy Pr,w e] ( W)
For a blunt axisymmetric body
0.475
Pek 6
£l = 0.47(-8€ (1 + \/§€g> P/ (15)
Py vy
and
oi 0.475
"= —_e € - (1 - - -

g, =0.47 (Pw“w> (1 +0.1 Bte>[1 (1 - Npr,w)(2 teﬂ (1- &) (16)
where B for a body of revolution at an angle of attack of 0° is obtained from refer-
ence 11 as

()
X
e 2
= dx 17
S Vo P
uetepwuwr 0

at the stagnation point B¢ = 1/2 and tg = 1. The present solutions (egs. (13) to (16)) as
well as the exact solutions of reference 11 are based on the transport-property data
given in reference 15.



In table I and figures 1 to 4 results from equations (13) to (16) are compared with
a representative number of exact similar solutions from table III of reference 11. (The
exact solutions in table III of reference 11 are only for conditions up to and including a
fully dissociated boundary layer.) The results of the equations compare within +7 per-
cent for a majority of the solutions and within +10 percent for all the solutions. In addi-
tion to the simplicity and accuracy of equations (13) to (16), the results with which the
equations were correlated cover a wide range of boundary conditions. The ranges of
boundary conditions for equations (13) and (14) were

P
0.2505 = —€ € =1.969
w Hw

0.00794 =t, 5 0.8

and
313
0.00603 = Cw =0.9

The ranges of boundary conditions for equations (15) and (16) were

Pete
0.1835 = —— =0.9367
Py Ky

0.2=t,=1.0

0.0076 = £, S0.75

and

As previously stated, the present relations and the exact solutions of reference 11 are
based on the transport-property data in reference 15. Erroneous results would be
obtained from these relations (eqs. (13) to (16)) by using transport-property data sig-
nificantly different from that of reference 15. In addition, results from the present
relations obtained by using the transport-property data of reference 15 are expected to
be in good agreement with other exact solutions wherein different high-temperature
transport data have been used. This good agreement is expected because the authors
of reference 16 showed that changing the values of the transport properties in the outer
portion of the boundary layer by a factor of 3 has a negligible effect on an exact solu-

. 14 1]
tion for fw and CW.



With equations (14) and (16) the heating rates on flat plates and blunt axisymmetric
bodies, respectively, can be computed directly withentreferenceto-the-stasmation-point.
Equation (15) provides a simple, accurate method for computing f",;, and, thereby, the
shear stress on a blunt axisymmetric body. The application of equations (13) to (16)
to expressions for computing the heat transfer and shear stress on flat plates, cones,
and blunt axisymmetric bodies is given in appendix B.

CONCLUDING REMARKS

The convective heating rate and aerodynamic shear stress are functions of the
normal derivatives of the enthalpy and velocity, respectively, evaluated at the surface
of a body. Simple, approximate equations have been developed for determining these
derivatives for a laminar boundary layer in equilibrium dissociated air. These equa-
tions were developed by correlating exact similar solutions to the boundary-layer equa-
tions over wide ranges of boundary conditions for flat plates or cones and blunt axisym-
metric bodies. The results of the approximate equations represent the exact solutions
within +10 percent.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 22, 1967,
129-01-03-08-23.



APPENDIX A
DEVELOPMENT OF APPROXIMATE RELATIONS

For a flat plate or cone the incompressible zero-pressure-gradient relation for
the velocity and enthalpy derivatives is obtained from reference 17 (p. 487) as

e c'W
f = 1= - 0.47 (A1)

Compressibility effects were accounted for in the present investigation by evaluating the
ratio B o at a reference condition given by Eckert's reference-enthalpy technique.

The relation for fy, then obtained (eq. (13)) was

= 0an( 2]
Pw Hw

The exponent 0.475 was used rather than 0.5, which was used in references 11
and 13 (p. 136), since it gave a better fit to most of the data. The approximate relation
for C\'v was found to correlate the exact solutions better if the term
[1 -(1- Npr w)(l - te)jl was used rather than the factor Npr,wl/3 which is given
in reference 18 (p. 264). In reference 6, the author shows that NPr,w1/3 does not
account for variable Prandtl number effects on C{V. The present term, which is part
of an expression for computing the zero-pressure gradient C'lv in reference 13, allows
for the variation in the Prandtl number and the dissipation parameter tg. The
resulting relation for ¢ (eq. (14)) was

e = o,47(£fl£f_

0.475
o)

[1 - (1 - NPr,w)(1 - te):' (1 - Cw)

For the blunt axisymmetric body, the effect of pressure gradient on C"v was
accounted for by the term (1 + 0.1\/B_t;) which is similar to the expression given in ref-
erence 12, In addition, the data of reference 11 were correlated better by evaluation of
the pp product at the conditions external to the boundary layer rather than at the ref-
erence conditions. The resulting expression for C"V on a blunt body (eq. (16)) was

Pele

0.475
gL = 0'47<b_r> (1 + 0.1\/Et—e)[1 - (1 - Nppw)(1 - te)](l - &)

wWEw

In reference 3, the pressure-gradient parameter g was shown to have a greater effect
on £;,'V than on C"'” (8" in ref. 3). For the calculation of f;;], the relation



APPENDIX A

patia\0:475
£ = 0.47 (m) 1+ ‘/Bte) (A2)

was used in an attempt to correlate the exact solutions. However, for increasing values
of B atvalues of ¢ Z0.2, equation (A2) underpredicted the exact solutions. The
exact solutions of reference 11 were normalized with the corresponding results of equa-
tion (A2), and the ratio was plotted as a function of the product of B¢,. The deviation
from unity appeared to vary exponentially with increasing values of g¢,,. The exponen-
Bw
tial e 6 was found to fit the deviation. Therefore, the resulting relation for f";, on
a blunt axisymmetric body (eq. (15)) was

o \0-475 . Bw
£ = 0'47<Eeu_e> (1 + \[Ete>e 6

wEw
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APPENDIX B
APPLICATION OF APPROXIMATE RELATIONS

The approximate equations (13) to (16) can be used with equations (5) and (6) and
equations (7) and (8) to compute heat-transfer and shear-stress values on flat plates or
sharp cones and blunt axisymmetric bodies, respectively. After proper substitution of
the present results in equations (5) to (8), the resulting expressions for the heat transfer
and shear stress are as follows:

For a flat plate

. 0.332(Hpy - hy) Pwuwue>0‘ Dk 0.475
“Gy = NPr,:v ( - (pw“w> [ - (1 - NPr’W)(l - te)] (B1)

and
0.5 0.475

p. .U * %
T = 0.332ue( W W e> (pp m ) (B2)
wWHw

For a cone, multiply the right-hand side of equations (B1) and (B2) by the \/§
(Mangler's transformation for a cone and flat plate).

For a blunt axisymmetric body (at the stagnation point)
0.5

“Ow,s = %\%’;(ﬂe - by)g (pwuw)g'ozs(peue)g'475(%2—>S (B3)
where
r=Xx
Bs =3
te =1

and, as in reference 19

11



APPENDIX B

For a blunt body (away from the stagnation point)

. - 0.475
R PN =S RS BN

By *

Blw

2 0.475
p. 1. _Yug [du —
TW = 04”\J( w 2;7:1 e<dxe> <pp‘::te> (1 + \/&;)6 6 (B5)

W,

12

¥ e cocrata: 2hee¥
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.2522

.2558

.2617

.2955

.3191

.3314

.3433

.3476

.3542

.2891

.3099

.3219

.3342

.3388

.3461

.3498
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TABLE I.- COMPARISON OF SOLUTIONS OF CORRELATION EQUATIONS WITH EXACT
SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR — Concluded

g 5
Polt
solutions (ref. 11) solutions (vet. 11)
0.2 0.10 0.768 0.7931 0 0.393 0.3965 0.288 0.2889
.5 .559 .5218 .318 .3086
1.0 620 6126 322 .3209
1.8 .694 7250 .327 .3343
2.2 726 1721 .329 .3394
3.0 785 .8549 .332 .3476
3.5 .820 .9009 .334 ..3518
1.0 .03 .680 .2909 5 447 4227 271 .2522
4 .3977 0 314 .3153 .246 .2286
5 440 .4163 .248 .2439
1.0 498 .4862 1253 .2528
1.8 .566 .5701 .258 12621
3.0 .645 6645 .264 .2710
.2 .03 680 5048 0 325 .3263 235 .2208
5 448 .4146 .253 .2446
1.0 494 47178 .256 .2539
1.8 .548 .5546 .260 .2640
3.0 612 .6417 .264 .2741
1.0 .0076 709 .1835 5 .359 .3357 .223 .2190
1.0 421 .4008 .229 2268
1.8 493 4775 .236 .2343
2.2 523 .5088 .239 .2369
3.0 576 5627 .244 12410
1.0 .05 768 .3613 5 497 .4784 .295 .3150
1.0 584 5798 .303 .3267
1.8 689 7012 312 .3380
2.2 733 7513 .316 .3419
3.0 812 .8388 .323 .3480
3.5 856 8872 .327 .3511
6 .05 .768 .4297 0 .336 .3389 .289 .2829
5 .489 .4710 .286 .3031
1.0 .563 .5617 .202 .3142
1.8 651 6713 .299 .3253
2.2 689 7167 .302 .3293
3.0 755 .7960 .308 .3357
4 05 768 4932 0 .345 .3477 .282 .2800
5 .488 4672 .287 .2988
1.0 553 .5511 .292 .3098
1.8 .630 .6532 .298 .3213
2.2 .663 .6957 .300 .3256
3.0 122 7698 .305 .3324
2 .05 768 .6249 0 .356 .3595 275 .2794
.5 497 4623 .300 .2971
1.0 .549 .5369 .304 .3084
1.8 .610 .6291 .308 .3208
2.2 .637 .6676 .310 .3255
2 .05 768 .6249 3.0 .684 7351 .313 .3332
¥ { f 1 3.5 711 7724 .315 .3373
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Figure 1.- Comparison of present results with exact solutions for velocity derivative for cone or flat plate.
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Solution:

O Exact (refe 11)
Present (eqe (1W))
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Figure 2.- Comparison of present results with exact solutions for enthalpy derivative for cone or flat plate.
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Figure 3.- Comparison of present results with exact solutions for velocity derivative for blunt axisymmetric body.
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Figure 4.- Comparison of present results with exact solutions for enthalpy derivative for blunt axisymmetric body.
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